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Abstract
The planctary conmmunity is particularly challenged in pursuing, digital elevation model gencration due
to: (I) limited multi-look observations and (2) the dynamic nature of the observation which introduces
complex geometric relationshi ps between observed body, spacecraft position, and sensor orientation. This
paper presents two types of automatic planctary topography map generation tools developed at the

Jet Propulsion |aboratory .

The first tool extracts relative elevation from a true stereo pair based

on a hicrarchical image registration process employing a multi-resolution pyramid image representation
method. The second tool analyzes the planet body shape from an arbitrary image pair with an overlapping,
arca utilizing a com mon map projection space as a registration medium.

1 TN'1T’JK)DUCYI'1ION

Surface topography is necessary for various scien-
tific processing and analysis of planctary observa-
tion datasets including 21) image construction from
therange information obtained by Radar systeins,
geomelric correction of the ofl-nadir (oblique) an-
gle observations, radiometric correction of the slope
rclated shading, etc. The logic applicd to distor-
tion removal canbe inversely appliedto extract
or upgrade digital clevation model (DXM).Multi-
Jook sterco processing, photo/radar clinometry, and
shape from shading arcexamples of suchinverse
processing techniques.

The inverse processing techniques are coneeptu-
ally straight forward but they are mathematically
as wall as comnputationally very challenging to im -
plement. The planctar y community has been addi-
tionally challenged due to the limited multi-look ob-
servations and the dynamic nature Of the observa-
tion which introdueces complex geometric relation-
ships between observed body, spaccceraft position,
and sensor orientation.

Inthe absense of a proper stereo database, the
planctary community has resorted to photo/radar
clinometry techniques [5] [3] [6] which utilize the

intensity variationin a single look image to derive
surface slopeinformation. The clinometry tech-
niques ileratively construct the surface slope model
untilthefinalsolution is obtained which minimizes
the intensity residual between the observation and
the synthesized intensity based 011 apriori photo-
metric/radiometric surface properties. The limited
understanding of the photometric and radiometric
propertics of the planct surface and the computa-
tional comnplexities of the algorithins have been ma-
jor drawbacks of the clinometry techniques.

During the recent Magellan SAR mission, cycle
111 of the mission was dedicated to obscrve the same
area whichwas takenduring cycle I with a diflerent,
look-angle so that stereo processing can be applied
for high resolution topography map generation of
Venus. A multi-resolution sterco processing algo-
rthm was developed to process large sterco dat ascls.
The algorithm was implemented 011 parallel arcl -
teclures employing data parallelisin where the algo-
rithm is parallely exceuted over a large number of
nodes ondecomposed datasets [7].

Another stereo algorithm was implemented which
deals with an image pair with arbitrary scale and
orientation. 'Thismethod utilizes the navigation




informationand planet body model totransform
the images from sensor space (pixel location) to a
31) object space (latitude/lo ngitude/radius) and to
a 21)map projection sprace.  The map projection
space removes Lhe Scale rotation, and viewing ge-
ometry difference between the image pair so that
the fmages can be registered for tiepoint genera-
tion. The tiepoints are reprojected onto the original
imagc coordinate where the distance between a tie-
point pair is assumed to be introduced {rom cither
inaccurate planet body Il iodel or surface clevation.

Both algorithms employ an arcal correlation based

1 magge registration [1] process for determining the
geometric disparities (tiepoints) between the t w o
images. The major weakness of the arcal correlation
algorithminterms of coping withcither Very grad -
ual or very abrupt clevation changes still persists
in our implementations. Anadaptive least square
correlation[4] which takes into account the geornet-
ric distortion between the two different projection
a ngles may improve some of the registration diffi-
cultics. Sterco processing followed by clinometry
processing also provides an alternative solution to
overcome the weakness.

age (Gaussian pyramidabove level ().
T'he relationship b etween three operators (¢, 1o,
1) is expressed as
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where the superseript lindicates the pyram id level.
One canutilize wavelet transforms to achicve a
sitnilar multi-resolution representation [8] [?]. The
main objective in cmploying the multi-resolution

representation is to extract the edgesin a hicrar-
chical fashion so that the image registration process
can be more eflicient as well as more robust.

2.2 Image Matching

The image matching process employs both Gaus-
sian pyra mid and ] .aplacian pyramids. The highest
level of pyramids (level n)may be determined by
building the pyramids until the corrclation of the
bandpass fi llered images (1.aplace pyramid level n)
over ancnlire area is successful or it may be set

2 HIERARCH ICAL STEREO PROCESS. to arcasonable level prior to the matching process.

ING

2.1 Multi-resolution Representation
Multi-resolution pyramid representation developed

The Laplacian pyramid which extracts proper spa-
tial frequncy features for cachlevel is applied for
the correlation process. For noisy data, the corre-
lation process must be avoided for the Laplacian

by Burt et al. [2] consists of three operators, Re- pyramid level ) since the high frequency features

duce(R), Expand (1), and Laplace(l)) . The Reduce
opcrator acts as a subsampler as well as a lowpass
filter by applying a Gaussian filter onanimage
while decimating the image. The Expand opera-
tor enlarges the reduced image to the original size
by reinserting the missing pixels with the lowpass
filtered result of the neighboring area. T'he 1 .aplace
operator is a simple subtracter which acts as ahigh-
pass filter by subtracting the lowp ass filtered image
from the original image.

Thiese operators arc applied to animage succes-
sively to create image representation pyramids. Thie
sequerice Of reduced images (low pass filtered im-
ages) is called Gaussian Pyramidand the sequence
Of highpassfilteredimages is called Laplacian Pyra-
mid. TheLaplace operator acts as a bandpass filter
when it is applied to an already lowpass filtered in-

may be fromn noise. Figure 1 illustrates the pyra-
mid level 3image matching processand Figure 2
deseribes the relationship between the disparity, el-
cvation, and prediction for the next level. The dis-
parity is converted to clevation in cach level prior
tothe expansion step and the expanded elevation
is converted back todisparity inorderto be used
as a prediction for the next reg istrat ion step. This
step is necessary due Lo the symetricity assumption
the expausion step employs. T'hie extracted eleva-
tion from this process is relative clevation expressed
in a sensor space. 1T'he sensor space mapping to the
object space (planet coordinate) must be per formed
for finaltopography map generation.

Yor cach resolutionlevel, the template size is kept
the same. The same size template in multiple res-
olution implies inultiple size templates at a single



resolutio ion. Jor the arcas wit hno Successful match,
their predicted disparities are taken as possible dis-
paritics. Such subst itution can be viewed as en-
ployment Of the larger template correlation result
when the smaller template does not o ntain enougl
corrclatable features. Thus, the resulting dispari-
ties 1 eflect adaptive template sive correlation where
thetemplate size is determined based 011 the area
corrcelation result.

After correlation process is completed for cach
teinplate over the entirescarch area, the correlation
scorcarray is examined for the maximum wi lue.
The maximum correlation value is tested against
the similarity threshold and the areas whose sim-
ilarity is Icss than the threshold are cither inter-
polated using neighboring disparity values (lowest
resolution) or substituted with the predicted dis-
parily. The true maximum location and score can
be estimated by fittinga quadratic surface function
shown below 011 the correlati on score array.
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The polynomial function may be approximated
without the zy term which allows anindependent
onc dimensional quadratic function fit around the
maximum corrclation point. The values of a and
b indicates the flatness of the surface. The sur-
face flatness implies the ambiguity of the corrcla-
tion. T'he correlation result may beignored when
the ambig uity is above a certain threshold.

3 MODEL BASED ELEVATION ANAL-
Y SIS

Sterco datasets are extremely rare for many planc-
tary bodics. In order to extract clevat ionfroman
arbitrary (non -stereo) image pair, th C sccond ool
was developed. The philosophy is to acquire a mas-
sive set, Of tiepoints, one at every pixel, to solve for
the intersect jon of the two view rays implied by each
ticpoint pair, and then to interpolate a surface be-
tween the solutions to create images. The resulling
maps arc in absolute planctary coordinates with ¢l-
evalion in meters above the oblate spheroid. It s

necessary (o have accurate carnera pointing matr -
ces and the location O f cach spacceraft in planct
coordinates.

Figure § illustrates the algorithm structure. The
alg orithm takes an image pair in arbi tra ry orienta-
tion represented by ITmageland Image2. The raw
images are then mapped-to identical map p rojec-
tions using, known navigation. It is unimportant
what projectionto usc solong as they are the same.
This step removes scale, rotatio n, and viewing ge-
ometry diflerences between the raw hmages. Note
that these projections are locally in ¢ rror due to
parallax bul we only use t hem for convenience and
will later undo the projection for cach tiepoint. The
nextstep is 10 acquire a dense scb of tiepoints which
wc call Ticpoint Generation in Figure 3.

A two dimensional correlation based image match-
ing process discussecl earlier is employed here as
well. When the tiepoints have been acqui red they
arc subject to an edit or which eli mi nates points
which disagree with their neighbors in either of two
ways:

« The vector leng ths difler by more than a cer-
tain percentage.

« The vector poir iting directions differ by more
than asct angle.

The remaining points are then inverse projected
from their locations in the projected map space to
their locations inthe imaging space. Fach tiepoint
pair is then converted into two View lays cianat-
ing from their respective spacecraft camera focal
plane locations into space. The direction cosines of
these rays ave refered to as (a1, by, ¢1) and (a9, by, ¢2)
arid their emanation pointsthe spacecraft locations
(21, y1,21) and (22,2, 22).

The spacecralt location comes from the orbit stale
veetor, and the direction cosines from the ro tation
matrix M which converts planet coordinates into
camera coordinates.

a X Xe
b 1= M| y- y (7
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where [ is the camera foca length.



The planct surface location is the point in space
where the two View rays come the closesttogether .
A line whichisperpendicular to both view rays con-
tains the solution. Thisline intersects cach view
ray. 1 o compute {he first intersection point we
Il 1ust solve for the intersection of the three plancs
al (2,9, 2).
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where X represents the cross product. The sce-
ond intersection point cau be obtained in a similar
man ner. The solution is midway between the two
intersection points and the miss distance of the view
rays is the distance between them.

The last step is to convert the points into planct
latitude,longitude, and radius, to subtract the oblate
spheroid radius at that latitude, and to interpolate
the clevation data. Results arce remapped onto a
projection for viewing.

4 RESULTS

IYigure 4 shows ancxample stereo processing re-
sult applicd to a stereo pair oblained from Mag-
cllan SAR on Venus. Figures § show an cxample
of themodel based clevation analysis applied to an
image pair obtained from voyager 11011 a satelite
of Uranus, Miranda.

The resulting clevation mode] shown in Figure
4.]1) was verified by applying it to remove the ge-
ometric distortion introduced by the oblique look
angle observationi from the raw images.The cor-
rectionprocessis refered as au orthonormal projec-
tion which simulates an image taken from the nadir
look angle. If the clevation model were accurately
generated, the two orthonomal projection images
would haveidentical spatial relationship. Though
duc to radiometrie differences between two images

and noise added from resampling process, the dif-
ference is not entirely duc to clevation model er-
ror, simple image differcucing may be employed to
verify the accuracy of the elevation. Figure 4.¢il-
lustrates the diflerence images before and afier or-
thonormal projection which clearly indicates the cl-
evation model IS accurate <inmost arcas.
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Figure 4 contains: a) a SAR sterco image }air of the Venus taken from the Magellan
spacecraft, b) extracted elevation and a rendered scene, ¢) difference between the pair
before and after orthonormal projection




Figure 6.b

Figure bh.c
Figure & contains: a) Miranda image 2684617 (Uranus ¥ncounter, Voyager 11),
b) Miranda image 2684629 (Uranus Encounter, Vaoyager 11),
¢) Extracted Elevation in Map Projection Space




